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Abstract

Graph partitioning is often used for load balancing in parallel computing, but it is known
that hypergraph partitioning has several advantages. First, hypergraphs more accurately model
communication volume, and second, they are more expressive and can better represent non-
symmetric problems. Hypergraph partitioning is particularly suited to parallel sparse matrix-
vector multiplication, a common kernel in scientific computing. We present a parallel software
package for hypergraph (and sparse matrix) partitioning developed at Sandia National Labs.
The algorithm is a variation on multilevel partitioning. Our parallel implementation is novel in
that it uses a two-dimensional data distribution among processors. We present empirical results
that show our parallel implementation achieves good speedup on several large problems (up to
33 million nonzeros) with up to 64 processors on a Linux cluster.

1 Introduction

Partitioning and load balancing are important issues in parallel scientific computing. The goal is
to distribute data (and work) evenly among processors in a way that reduces communication cost
and achieves maximal performance. Graph partitioning has long served as a useful model for load
balancing in parallel computing. Data are represented as vertices in a graph, and edges represent
dependencies between data. Graph partitioning attempts to minimize the number of cross-edges in
the graph between processors, as these result in application communication. It has been shown that
for many problems, this cut-edge metric is not an accurate representation of communication cost or
volume. On the other hand,hypergraph modelsaccurately represent communication volume [4].
A hypergraphH = (V, E) consists of a vertex setV and a set of hyperedgesE . (Hyperedges
are also callednets.) Each hyperedge is a subset ofV . In parallel computing, communication is
required for a hyperedge whose vertices are in two or more processors. Catalyurek and Aykanat [4]
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proposed a hypergraph model for sparse matrix-vector multiplication, and showed that the hyper-
edge cut metric correspondsexactlyto the communication volume. An important advantage of the
hypergraph model is that it can easily represent nonsymmetric and rectangular matrices. For more
details on different partitioning models for parallel computing, see [9, 10].

Graph partitioning is frequently used for parallel mesh-based computations such as finite ele-
ment calculations. Since these applications are typically sparse and often regular, the graph model
works quite well. In fact, simple geometric partitioning methods may work almost as well as graph
partitioning. In this paper, however, we focus on applications that are non-traditional in some way.
Specifically, the sparse matrix representing the problem could be nonsymmetric, rectangular, semi-
dense, or highly irregular. We demonstrate the utility of hypergraph partitioning on test data from a
variety of areas, including Markov chains, polymer self-assembly, DNA electrophoresis, electrical
circuit simulation, sensor placement, and information retrieval (web search).

An important kernel in many scientific computations is a sparse matrix-vector product. The
parallel issue is how to distribute the sparse matrix between the processors. The most common
approach is to split the matrix in one dimension (by either rows or columns), assigning approxi-
mately even chunks (of rows/columns) to processors. Both variations naturally lead to hypergraph
partitioning. In the row-net model, each column corresponds to a vertex and each row corresponds
to a hyperedge. For row partitioning, an analogous column-net model can be used. Although
simply using hypergraph partitioning gives an improvement over graph partitioning (25-35% re-
duction is typical [4]), even lower communication volumes can be achieved by going beyond this
1D partitioning. Vastenhouw and Bisseling recently suggested a recursive two-dimensional data
distribution known as Mondriaan [18]. Catalyurek and Aykanat have proposed a fine-grain parti-
tioning model [5] where each nonzero in a matrix is independently assigned to processors. Both
these methods rely on hypergraph partitioning as an underlying technique. Software for hyper-
graph partitioning therefore becomes important.

Several software packages for hypergraph partitioning exist: e.g., PaToH [6], hMETIS [12],
Mondriaan [18] (for sparse matrices), and MLpart [3] (for circuits). However, all these packages
run in serial. For large-scale parallel applications, partitioning must be performed in parallel. In
the following, we describe the design and structure of a parallel hypergraph partitioner we have
developed in Sandia’s Zoltan toolkit [7, 19], a library of parallel partitioning and load-balancing
methods. Our parallel implementation uses a two-dimensional data distribution to reduce commu-
nication within the partitioning algorithm. We compare the effectiveness and performance of our
parallel hypergraph partitioner with parallel graph partitioners, serial hypergraph partitioners, and
a parallel hypergraph partitioner Parkway developed by Trifunovic and Knottenbelt [17] concur-
rently with this work.

2 Preliminaries

The (unweighted) hypergraph partitioning problem is defined as follows: given a hypergraphH =
(V, E) and an integerk , partition the vertex setV into k disjoint subsetsVj, j = 0, . . . , k − 1, of
approximately equal sizes such that a cut metric is minimized. We refer toP = {V0, . . . , Vk−1} as
a partitioning and the subsets as partitions. A hyperedge is cut if it contains at least two vertices
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Figure 1: The columns in the sparse matrixA (left) correspond to the vertices (represented as
circles) in the hypergraphH (right). The rows inA correspond to hyperedges inH (represented
as squares).

belonging to different partitions. We seek to minimize the cut metric

cuts(H, P ) =
|E|−1∑
i=0

(λi(H, P )− 1), (1)

whereλi(H, P ) ≤ k is the number of partitions spanned by hyperedgei in the partitioningP .
This metric is known as the(k−1)-cut; it is important because it accurately reflects communication
cost in parallel computing and, in particular, sparse matrix-vector multiplication. Whenk = 2,
cuts(H, P ) is simply the number of hyperedges cut.

We allow both vertices and hyperedges to have (scalar) weights, since this is more general and
important in some applications. In the weighted partitioning problem, the objective is to minimize
the weighted cut subject to the partitions having an (approximately) equal sum of vertex weights.

A hypergraph can also be viewed as a sparse matrix. We use the row-net model, where each
row in the matrix corresponds to a hyperedge and each column corresponds to a vertex. LetA be
the sparse matrix corresponding to a hypergraphH . Thenaij = 1 if vertex j belongs to hyperedge
i , and zero otherwise. An example of the row-net model is given in Figure 1.

2.1 Multilevel partitioning methods

Our algorithm follows the well-known multilevel partitioning approach, which has proved suc-
cessful both for graph partitioning [2, 11, 14] and hypergraph partitioning [4, 12]. The idea is to
approximate the hypergraph by a sequence of smaller hypergraphs that reflect the original hyper-
graph. Incoarsening, we construct the smaller hypergraphs. Incoarse partitioning, we partition
the smallest hypergraph. Inrefinement, we project a coarse partitioning to a finer hypergraph and
improve the partitioning using a local optimization (refinement) method. We describe our parallel
implementation of this multilevel “V-cycle” in the next section.

There are two possible approaches to achieve ak -way partitioning. The first is called direct
k -way partitioning, where the multilevel V-cycle is applied once to directly split the hypergraph
into k parts. The other is recursive bisection, where the V-cycle partitions the hypergraph into two
parts; such bisection is repeated recursively until the desired number of partitionsk is reached. By
allowing the resulting hypergraphs in each bisection step to have unequal sizes, recursive bisection
can support arbitraryk ; it is not limited tok being a power of two.

Both approaches are viable; PaToH [6] uses recursive bisection while hMETIS [12] uses direct
k -way. Our implementation is based on recursive bisection for arbitraryk . Note thatk is a user
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parameter that may differ from the number of processorsp . However, in dynamic load balancing,
typically k = p .

3 Parallel Hypergraph Partitioning Algorithm

We first discuss the parallel data distribution, then describe our parallel implementation of each of
the main phases in multilevel partitioning.

3.1 Data distribution

A major decision for our parallel partitioner is how to distribute the data (the hypergraph or matrix)
between processors. Perhaps the most natural options are to divide either the vertices or the hy-
peredges between processors. These options correspond to distributing the matrix along columns
or rows, respectively. We have opted for a third option, namely to divide the matrix along both
rows and columns in a way that produces a Cartesian distribution of the matrix. We call this a two-
dimensional (2D) layout since each processor is assigned a rectangular submatrix. Conceptually,
we think of the processors also as being organized in a 2D fashion, and we will refer to rows and
columns of processors. Note that this is only a logical arrangement; the physical interprocessor
network may be different.

The main advantage of the 2D layout is that most communication can be done either along
rows (horizontally) or along columns (vertically). Suppose we havep = px × py processors,
wherepx and py are the number of processors in a row and a column, respectively. Then only
px or py processors need to participate in collective communication operations. Typicallypx =
O(
√

p). Such 2D data distributions have been used successfully for several matrix computations [1,
Ch.2,Ch.4].

Another way to view our data layout is that each processor knows only partial information about
some vertices and some hyperedges. In contrast to Parkway [17] which uses 1D distributions for
both vertices and hyperedges, we do not use any type of ghosting, thereby significantly reducing
the memory required.

Note that a 2D parallel data distribution was proposed for graph partitioning in [13]. In that
case, the vertices were split among

√
p processors while the adjacency matrix was split among all

p processors. It was observed that speedup was limited to
√

p because the “diagonal processors”
became a bottleneck, so those authors later adopted a 1D distribution. We believe a 2D distribu-
tion is more suitable for hypergraph partitioning because the most time-consuming parts of the
algorithm are distributed among allp processors. There are only a few sub-tasks that are solely
vertex-based or solely edge-based and parallel speedup of some of these tasks may be limited to
px andpy , respectively; this should not become a bottleneck for the overall algorithm.

3.2 Coarsening

The coarsening phase approximates the original hypergraph via a succession of smaller hyper-
graphs. When the smallest hypergraph has fewer vertices than some threshold (e.g., 100), the
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Algorithm 1 Serial inner-product matching
1: procedure SERIAL-IPM(H = (V, E))
2: initialize ip[v ] ← 0 for v ∈ V
3: for all unmatchedv ∈ V do . Compute all inner products withv
4: for e ∈ E such thatv ∈ e do
5: for all unmatchedu ∈ e, u 6= v do
6: ip[u ] ← ip[u ] + 1
7: w ← argmax(ip)
8: for e ∈ E such thatv ∈ e do
9: for all unmatchedu ∈ e do

10: ip[u ] ← 0 . Reset all inner product values to zero
11: match(v ,w ) . Match v with best candidate,w

coarsening stops. Several methods have been proposed for constructing coarser representations of
graphs and hypergraphs. We consider only methods based on merging pairs of vertices. The issue
then becomes how to select vertices to merge together. Intuitively, we wish to merge vertices that
are similar and therefore more likely to be in the same partition in a good partitioning. Catalyurek
and Aykanat [4] suggested a heavy-connectivity matching, which measures a similarity metric be-
tween pairs of vertices. Their preferred similarity metric, which was also adopted by hMETIS [12]
and Mondriaan [18], is known as theinner product. The inner product between two vertices is
defined as the Euclidean inner product between their binary hyperedge incidence vectors, that is,
the number of hyperedges they have in common. (Edge weights can be incorporated in a straight-
forward way.) Our code also has the option to compute thecosinesimilarity metric, which is a
scaled version of the inner product commonly used in information retrieval.

3.2.1 Matching

Given the inner product values, the problem of finding good pairs to merge can be modeled as a
maximum-weight matching problem, where the edge weights in the graph are the inner products
between vertices from the hypergraph. Previous work indicates that the matching problem does
not need to be solved optimally, so quick heuristics are commonly used. We use variations of the
greedy strategy (also known as first-choice).

The sequential greedy algorithm works as follows. Pick a (random) unmatched vertexv . For
each unmatched neighbor vertexu , compute the inner product< v, u >. Select the vertex with
the highest non-zero inner product value and match it withv . Repeat until all vertices have been
considered. Care must be taken to implement this efficiently; see Algorithm 1.

In parallel, this simple algorithm becomes much more complicated. Each processor knows
about only a subset of the vertices and the hyperedges. Computing the inner products requires
communication. If we consider the hypergraph as a sparse matrixA , we essentially need to com-
pute the matrix productAT A . We use the sparsity ofA to compute only entries ofAT A that may
be nonzero. Since we use a greedy strategy, we actually compute only a subset of the nonzero
entries inAT A.
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Even if A is typically very sparse,AT A may be fairly dense. Therefore we cannot compute all
of AT A at once, but instead compute parts of it in separaterounds. In each round, each processor
selects a (random) subset of its vertices that we callcandidates. These candidates are broadcast
to all other processors in the processor row. This requires horizontal communication in our 2D
layout. Each processor then computes the inner products between its local vertices and the ex-
ternal candidates received. Note that these inner products are only partial inner products; vertical
communication along processor columns is required to obtain the full (global) inner products. One
could let a single processor within a column accumulate these full inner products, but this pro-
cessor may run out of memory. So to improve load balance, we accumulate inner products in a
distributed way, where each processor is responsible for a subset of the vertices.

At this point, the potential matches in a processor column are sent to themaster rowof pro-
cessors (row 0). The master row first greedily decides the best local vertex for each candidate.
These local vertices are thenlocked, meaning they can match only to the desired candidate (in this
round). This locking prevents conflicts between candidates, which could otherwise occur when the
same local vertex is the best match for several candidates. Horizontal communication along the
master row is used to find the best global match for each candidate. Due to our locking scheme, the
desired vertex for each match is guaranteed to be available so no conflicts arise between vertices.
The full algorithm is summarized in Algorithm 2.

Observe that the full inner-product matching is computationally intensive and requires several
communication phases along both processor rows and columns. Empirically, we observed that
the matching usually takes more time than the other parts of the algorithm. We are therefore cur-
rently exploring faster, approximate matching methods. We have implemented one such alternative
matching method where the matching is limited to pairs of vertices within the same processor col-
umn.1 This way, no horizontal communication is required; only vertical communication to sum the
inner products is needed. Communication cost is reduced significantly, but the matching quality is
often worse. One can further construct various hybrid schemes that first use local data, and then
access remote data only if deemed necessary.

3.2.2 Contraction

After a matching (pairing of vertices) has been computed, we build the coarser hypergraph by
merging matched vertices. Matched vertices in the finer hypergraph become a single vertex in
the coarser hypergraph, with its vertex weight equal to the sum of the fine vertices’ weights. The
new coarse vertex is a member of each hyperedge that contained at least one of its fine vertices.
This merging reduces the number of vertices by the number of matches. To further reduce both
memory requirements and run time, we take two steps to reduce the number of hyperedges. First,
we discard all hyperedges of size one, as they cannot contribute to the cut metric (1). Second, we
collapse identical hyperedges into a single hyperedge. Two hyperedges are identical if they contain
the same vertices. Such a comparison can be done efficiently using a hash function based on the
vertices in a hyperedge; edges with different hash values are not identical. Since our hyperedges
are distributed, computing the hash function requires horizontal communication. For hyperedges

1Due to space limitations, we do not present results for this method here.

6



Algorithm 2 Parallel inner-product matching
1: procedure PARALLEL -IPM(H = (V, E)) . H is the local part of the hypergraph
2: rounds← 8× px . px is the #processors in a processor row
3: ncand← |V |/(2× rounds) . each match pairs 2 vertices
4: for k ← 1 to rounds do
5: C ′ ← ncand unmatched candidate vertices inmy processor column
6: BroadcastC ′ and their columns (hyperedges) to all processors inmy processor row
7: C ← all received candidates
8: for v ∈ C do . Compute all local inner products withv
9: initialize ip[u ,v ] ← 0 for u ∈ V

10: for e ∈ E such thatv ∈ e do
11: for all unmatchedu ∈ e, u /∈ C ′ do
12: ip[u ,v ] ← ip[u ,v ] + 1 . ip[u ,v ] is a local inner product
13: for v ∈ C do
14: For all ip[u ,v ]> 0, send ip[u ,v ] to row (v mod py )
15: Receive partial inner products, ip[u ,v ].
16: for v ∈ C , wherev mod py = my processor row do
17: For all received ip[u ,v ], gip[u ,v ] ← gip[u ,v ] + ip[ u ,v ] . Sum received values

to global inner product gip
18: Send gip[∗ ,v ] to master row(row 0)
19: if my processor row = 0 then . master row
20: for each candidatev ∈ C do
21: Selectunmatchedlocal vertexw with highest gip[v ,w ]
22: Store (v, w ,gip[v, w ]) in array local best
23: Computeglobal best from local best by AllReduce communication alongmaster

row
24: for each local candidatev ∈ C ′ do
25: if (v, w) ∈ global best then
26: Match v andw .

with identical hash values, we compare their vertex lists to determine whether the hyperedges are
truly identical; this step requires vertical communication. When hyperedges are collapsed, the new
edge gets an edge weight equal to the sum of all the edges it represents. In this way, the cut metric
is preserved, so the coarse problem is equivalent to the case with no edge removal.

3.3 Coarse Partitioning

The coarsening stops when the hypergraph is small. Since the coarse hypergraph is small, we
replicate it on every processor. Each processor runs a randomized greedy algorithm to compute a
different partitioning intok partitions. (For the recursive bisection algorithm, we usek = 2.) We
then evaluate the cut metric (1) on each processor and pick the globally best partitioning.
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3.4 Refinement

The refinement phase takes a partition assignment projected from a coarser hypergraph and im-
proves it using a local optimization method. The most successful refinement methods are variations
of Kernighan–Lin (KL) [16] and Fiduccia–Mattheyses (FM) [8]. These are iterative methods that
move (or swap) vertices from one partition to another based ongain values, that is, how much the
cut weight decreases by the move. While greedy algorithms are often preferred in parallel because
they are simpler and faster, they generally do not produce partition quality as good as KL/FM.
Thus, we have adopted an FM-like approach.

We have implemented a parallel two-way (k = 2) refinement heuristic based on FM. The
algorithm performs multiplepass-pairsuntil either a predefinedpass limitis reached or no further
improvement is achieved in the last pass-pair. Each pass-pair consists of two consecutive passes
where, on each pass, vertices from alternating partitions are moved to the other partition. Doing
one-directional moves on each pass guarantees that none of the concurrent moves adversely affects
the gain of vertices in other processors. In other words, if a set of vertices is moved to the other
partition, the actual reduction in the cut metric (1) is at least the sum of the gains of the vertices
moved.

Our local refinement is performed with the goal of improving balance and cuts within processor
columns and, thus, in the global partitioning. At the beginning of each pass, even though the
partitioning satisfies the global balance constraints, local balances on each processor column might
violate the balance constraint. Based on this initial distribution, we adjust the move-feasibility
constraints on each processor to guarantee that no moves violate the global balance constraint.
Each processor contributes to the computation of vertex gains at the beginning of a pass. Within
each processor column, the processor with the largest number of nonzeros is selected as thevertex
mover. The vertex mover tries to move all vertices from the source partition to the destination
partition without violating the balance constraint. After moving each vertex, the vertex mover
updates the gain values of the adjacent vertices using only its local data. Although this scheme
deviates from the original FM algorithm, it allows each vertex mover to work concurrently without
any synchronization. By selecting the processor with the largest number of nonzeros, we make
more informed vertex moves.

We have observed that our parallel method produces quite good partitionings, but it is possible
that its effectiveness will decrease for very large numbers of processors due to its local perspective.
In future versions, we will explore other parallel refinement schemes.

3.5 Recursive Bisection Data Splitting

After a multilevel V-cycle computes a bipartitioning of the hypergraph, we split the hypergraph
into two subsets (one for each partition), and apply the multilevel algorithm recursively to each
subset. There are two options for managing data during parallel recursive bisection. One option is
to leave the data in place, and let all processors first work on one subset of the hypergraph, then
the other subset. The advantage of this approach is that no data movement is required.

An alternative approach is to split the processors into two subsets, and move the hypergraph
corresponding to each subset (after the first bisection step) onto separate sets of processors. This
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(a) Before split (b) After split

Figure 2: An illustration of splitting forp=k=6. For the sake of illustration, assume that the first
bisection has ratio of 4 to 2, and processors are also split into two by the same ratio. Circles
represent vertices (columns), and squares represent hyperedges (rows).

allows each half of the processors to work on independent subproblems simultaneously. There
is a cost associated with remapping (moving) the hypergraph data, but the communication cost
within the partitioning is reduced because the communication becomes more local. Moreover, each
processor in the subset gets a larger percentage of the split hypergraph and, thus, a more complete
view of it, resulting in higher quality. Figure 2 illustrates processor and hypergraph splitting during
recursive bisection withp = 6. In this example, partitioning of the hypergraph is illustrated with
color-coded vertices (circles) and hyperedges (squares). Red and blue circles represent vertices
assigned to partitions 0 and 1, respectively. Yellow and magenta squares represent un-cut and cut
hyperedges. During splitting, vertices of partition 0 are moved to four processors (P11, P12, P21 and
P22 ); vertices of partition 1 are moved to the remaining 2 processors (P31, P32 ). Un-cut hyperedges
are preserved. But to accurately measure cut size in further bisections, each cut hyperedge is split
into two hyperedges: one connecting vertices in partition 0, and one connecting vertices in partition
1. If this process yields hyperedges of size one, they are discarded, as they cannot contribute to the
cut metric in further bisections.

We have tested both strategies in our code. Splitting the processors both reduced execution time
and improved quality. Thus, we made splitting the default option and used it in all experiments
reported here.

4 Experimental Results

Our parallel hypergraph code is part of the Zoltan [7, 19] toolkit for load balancing and parallel
data management, which is open-source and freely available. It has been implemented in ANSI C
and uses MPI for communication. Only collective communication calls are implemented in MPI
directly; unstructured (point-to-point) communication is performed in BSP-like [1] supersteps via
Zoltan’s communication layer.

We ran our tests on a Linux cluster at Sandia that has dual-processor Intel Xeon (3.0 GHz)
nodes. Its interconnect network is Myrinet-2000.
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Name |V | (cols) |E| (rows) pins (nonzeros) Sym. Application Area
2DLipidFMat 4,368 4,368 5,592,344 Yes Lipid bilayer self-assembly
cage14 1,505,785 1,505,785 27,130,349 Yes DNA electrophoresis
d256 100,000 100,000 25,600,000 No Random matrix
ibm18 210,613 201,920 819,697 No VLSI design
polyDFT 46,176 46,176 3,690,048 No Polymer self-assembly
roads2 1,284,498 1,683,554 7,713,905 No Sensor placement
StanfordBerkeley 683,446 683,446 7,583,376 No Web-links
StanfordBerkeleyT 683,446 683,446 7,583,376 No Transpose of StanfordBerkeley
tbdlinux 112,757 20,167 2,157,675 No Information retrieval
voting250 5,218,300 5,218,300 32,986,597 No Markov process
Xyce680b 682,862 682,862 3,871,773 Yes VLSI design
Xyce680s 682,712 682,712 2,329,176 Yes VLSI design

Table 1: Test hypergraphs and matrices.

4.1 Test data and software

We collected a set of test problems from a variety of applications. A summary of the test hyper-
graphs and matrices is given in Table 1. The matrices 2DLipidFMat and polyDFT are from the
Tramonto density functional theory code and represent self-assembly of lipid bilayers and poly-
mers, respectively; cage14 is a DNA electrophoresis model; d256 is a random matrix in which each
vertex has degree 256; ibm18 is the largest test problem in the ISPD98 circuit benchmark suite;
roads2 is a mixed-integer linear programming matrix from sensor placement; StanfordBerkeley is a
matrix representing web links between Stanford’s and Berkeley’s web sites; StanfordBerkeleyT is
the transpose of the StanfordBerkeley matrix; tbdlinux is a term-by-document matrix from a Linux
manual; voting250 represents a Markov transition matrix from a model of voters and polling sta-
tions; and the xyce680 problem represents an ASIC model. The xyce680 problem comes in two
variations: a “base” version and a “stripped” version where dense rows and columns in the matrix
have been removed. For all experiments, we partitioned matrix columns with unit weights per
column.

The partitioners we used were ParMETIS 3.1 [15] (parallel graph partitioner), PaToH 3.0 [6]
(serial hypergraph partitioner), Parkway 2.0 [17] (parallel hypergraph partitioner), and our own
parallel hypergraph partitioner implemented in Zoltan. Although Zoltan has many different parti-
tioners, we use the name Zoltan in this paper to denote its parallel hypergraph partitioner. Parkway
can use PaToH or hMETIS as its coarse partitioner; we used PaToH with Parkway as it was faster
and gave cut quality at least as good as hMETIS. In all experiments, we requested a load balance
tolerance of 10%; that is, loadmax /loadavg ≤ 1.1. All partitioners managed to satisfy this condi-
tion, so we do not report the actual load imbalances. All data is based on the average of 25 runs.
Parkway results for some problems are based on fewer than 25 iterations due to their long run
times.

Because graph partitioners operate on undirected graphs, we ran ParMETIS only on symmetric
problems. Nonsymmetric matrices can be symmetrized into (undirected) graphs, but it has been
shown [4] that graph partitioning gives a worse approximation to communication volume for non-
symmetric than symmetric problems, so the hypergraph model is clearly preferable in such cases.
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Hypergraph cut metric Partitioning time
normalized w.r.t. Zoltan in seconds

Matrix Norm. Value METIS PaToH Zoltan METIS PaToH Zoltan
2DLipidFMat 107,736 1.82 1.29 1.00 7 17 109
cage14 1,550,618 1.15 - 1.00 26 - 829
ibm18 25,787 1.01 1.00 14 16
polyDFT 82,420 0.96 1.00 34 36
roads2 5,681 0.65 1.00 30 66
StanfordBerkeley 25,676 0.89 1.00 33 2489
StanfordBerkeleyT 158,064 1.20 1.00 84 45
tbdlinux 232,895 1.00 1.00 29 73
Xyce680b 726,663 1.23 0.94 1.00 913 1650 36
Xyce680s 25,521 2.12 0.83 1.00 17 12 29

Table 2: Comparison of Zoltan hypergraph partitioning with METIS graph partitioning and PaToH
hypergraph partitioning withk = 64 on one processor.

4.2 Comparison of partitioners

First, we consider the case where we fix the number of partitionsk = 64 and the number of
processorsp = 1 and p = 64. We show in Tables 2 and 3 the cut metric (1) and partitioning
times for each test matrix. Results marked with “-” indicate unsuccessful runs, typically due to
insufficient memory. Forp = 1, we compare Zoltan’s hypergraph partitioner with PaToH and
METIS. METIS was applied only to symmetric test matrices. With PaToH, the processor had
insufficient memory to partition the cage14, voting250, and d256 matrices. Thus, we exclude
voting250 and d256 from Table 2, as Zoltan was the only method to partition them. Forp = 64,
we compare Zoltan’s hypergraph partitioner with Parkway and ParMETIS. ParMETIS was applied
only to symmetric test matrices. Parkway ran out of memory for the d256, StanfordBerkeley, and
Xyce680b matrices; we exclude d256 from Table 3 because Zoltan was the only method that
partitioned it.

As expected, hypergraph partitioners generally give higher quality (i.e., lower cut metric (1))
than graph partitioners. This higher quality translates directly into reduced communication volume
for operations such as matrix-vector multiplication. Furthermore, we see that Zoltan’s partition
quality is competitive with the serial hypergraph partitioner PaToH. Parkway sometimes produces
fewer cuts than Zoltan. However, Zoltan runs are typically much faster than Parkway.

The Xyce680 problems display a dramatic difference between the base and the stripped version.
Zoltan and PaToH have implemented special handling of dense hyperedges; we applied this same
handling to Parkway’s input as well. It is much more difficult for a graph partitioner to detect
such structure, and we see that ParMETIS ran slowly and showed fluctuating quality for the base
version. It ran more quickly on the stripped version.
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Hypergraph cut metric Partitioning time
normalized w.r.t. Zoltanp = 1 in seconds

Matrix Norm. Value ParMETIS Parkway Zoltan ParMETIS Parkway Zoltan
2DLipidFMat 107,736 1.90 1.08 1.05 5 466 4
cage14 1,550,618 1.26 0.97 1.02 2 2899 79
ibm18 25,787 1.12 1.08 55 5
polyDFT 82,420 0.90 1.03 93 3
roads2 5,681 0.68 1.13 17 19
StanfordBerkeley 25,676 - 0.86 - 805
StanfordBerkeleyT 158,064 1.02 1.36 144 16
tbdlinux 232,895 1.05 1.07 565 73
voting250 511,609 1.03 1.04 266 117
Xyce680b 726,663 1.15 - 0.99 1027 - 13
Xyce680s 25,521 2.20 0.89 1.07 13 10 11

Table 3: Comparison of Zoltan hypergraph partitioning with ParMETIS graph partitioning and
Parkway hypergraph partitioning withk = 64 on 64 processors.

4.3 Scalability

We examine the scalability of Zoltan, Parkway, and ParMETIS on a subset of our test problems.
We select cage14, 2DLipidFMat and Xyce680s, as their symmetry allows us to apply ParMETIS
to them. Additionally, these test problems represent well the range of performance we observe for
the entire test suite.

For each test problem, we setk = 64, and we varyp from p = 1 to 64. We partition each
matrix with Zoltan, Parkway, and ParMETIS. (Parkway does not run withp = 1, so Parkway
results are shown only forp > 1.) In Figure 3, we show the cut metric (1) normalized with respect
to the cut metric for Zoltan withp = 1. We observe that Zoltan’s partition quality remains stable
with increasingp .

In Figure 3, we also show the execution times for each partitioner. Again, we see that while
Zoltan produces decompositions with lower communication volume than ParMETIS, it is typi-
cally slower than ParMETIS. Parkway sometimes obtains even fewer cuts but takes a longer time.
The run time of Zoltan generally decreases withp but scalability is not perfect. Its scalability is
comparable to or better than that of ParMETIS and Parkway, respectively.

4.4 2D processor configuration

We test the effectiveness of Zoltan’s 2D processor configuration with experiments using various
1D and 2D processor configurations. By default, Zoltan’s 2D processor layout is as square as
possible; that is,px ≈ py . A square layout may not be optimal for each phase of the algorithm
(e.g., matching, coarsening, refinement), as each phase has different communication requirements
in the x and y dimensions. Our approach assumes that distributions withpx ≈ py work well on
average.
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Figure 3: A comparison of partition quality (left) and execution time (right) for Zoltan, Parkway
and ParMETIS withk = 64 on p = 1 to 64 processors.
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Figure 4: A comparison of partition quality (left) and execution time (right) for Zoltan using
various processor configurationspx × py with k = 2.

Choosingp = 64, we experimented with different values ofpx andpy . We setk = 2 to ensure
that the specified ratio could be maintained throughout the computation; fork > 2, the recursive
bisection would require some variance in the processor ratios. Results for several test matrices and
configurations ofpx × py are shown in Figure 4. We observe that rectangular configurations with
px small but greater than one generally worked best. Interestingly, we observe that the “natural”
strategy of distributing vertices among processors and maintaining full connectivity information
for each vertex (py = 1) worked least well. This strategy is typical in parallel graph partitioners.
Distributing hyperedges among processors while maintaining full vertex information for each hy-
peredge (px = 1) was the better 1D layout on most problems, but generally less efficient than a
2D approach.
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5 Conclusions and Future Work

We have described the design of a parallel multilevel hypergraph (or sparse matrix) partitioner
that runs on distributed-memory computers. We have shown that the partition quality is similar
to that of serial hypergraph partitioners (PaToH), and in most cases it runs much faster than the
recent similar code Parkway. Our code gives fairly good parallel speedup without compromising
partition quality on a Linux cluster with up to 64 processors. Our 2D data distribution gives better
performance than the standard 1D layout.

As future work, we want to improve the parallel scalability so that partitioning will be fast
even on machines with thousands of processors. In order to achieve that, we will investigate
faster matching and coarsening methods. We do not necessarily need to do the complete inner
product matching (which requires a lot of communication); other simpler (approximate) and faster
variations are under development.

Another potential source of improvement is better load balancing within the partitioner. This is
a chicken-and-egg problem, since hypergraph partitioning is the best way to compute a good data
distribution! However, simpler heuristics to balance the work may prove useful. Finally, we plan
to add new features to our partitioner, in particular, dynamic repartitioning and multi-constraint
partitioning.
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